Embodied anomaly resolution in molecular genetics: A case study of RNAi

Foundations of Science 13 (2):177-193 (2008)
  Copy   BIBTEX

Abstract

Scientific anomalies are observations and facts that contradict current scientific theories and they are instrumental in scientific theory change. Philosophers of science have approached scientific theory change from different perspectives as Darden (Theory change in science: Strategies from Mendelian genetics, 1991) observes: Lakatos (In: Lakatos, Musgrave (eds) Criticism and the growth of knowledge, 1970) approaches it as a progressive “research programmes” consisting of incremental improvements (“monster barring” in Lakatos, Proofs and refutations: The logic of mathematical discovery, 1976), Kuhn (The structure of scientific revolutions, 1996) observes that changes in “paradigms” are instigated by a crisis from some anomaly, and Hanson (In: Feigl, Maxwell (eds) Current issues in the philosophy of science, 1961) proposes that discovery does not begin with hypothesis but with some “problematic phenomena requiring explanation”. Even though anomalies are important in all of these approaches to scientific theory change, there have been only few investigations into the specific role anomalies play in scientific theory change. Furthermore, much of these approaches focus on the theories themselves and not on how the scientists and their experiments bring about scientific change (Gooding, Experiment and the making of meaning: Human agency in scientific observation and experiment, 1990). To address these issues, this paper approaches scientific anomaly resolution from a meaning construction point of view. Conceptual integration theory (Fauconnier and Turner, Cogn Sci 22:133–187, 1996; The way we think: Conceptual blending and mind’s hidden complexities, 2002) from cognitive linguistics describes how one constructs meaning from various stimuli, such as text and diagrams, through conceptual integration or blending. The conceptual integration networks that describe the conceptual integration process characterize cognition that occurs unconsciously during meaning construction. These same networks are used to describe some of the cognition while resolving an anomaly in molecular genetics called RNA interference (RNAi) in a case study. The RNAi case study is a cognitive-historical reconstruction (Nersessian, In: Giere (ed) Cognitive models of science, 1992) that reconstructs how the RNAi anomaly was resolved. This reconstruction traces four relevant molecular genetics publications in describing the cognition necessary in accounting for how RNAi was resolved through strategies (Darden 1991), abductive reasoning (Peirce, In: Hartshorne, Weiss (eds) Collected papers, 1958), and experimental reasoning (Gooding 1990). The results of the case study show that experiments play a crucial role in formulating an explanation of the RNAi anomaly and the integration networks describe the experiments’ role. Furthermore, these results suggest that RNAi anomaly resolution is embodied. It is embodied in a sense that cognition described in the cognitive-historical reconstruction is experientially based.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 92,261

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2009-01-28

Downloads
57 (#282,512)

6 months
15 (#171,570)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

The Structure of Scientific Revolutions.Thomas Samuel Kuhn - 1962 - Chicago: University of Chicago Press. Edited by Otto Neurath.
The Structure of Scientific Revolutions.Thomas S. Kuhn - 1962 - Chicago, IL: University of Chicago Press. Edited by Ian Hacking.
Criticism and the growth of knowledge.Imre Lakatos & Alan Musgrave (eds.) - 1970 - Cambridge [Eng.]: Cambridge University Press.

View all 31 references / Add more references