4 found
Order:
  1.  22
    The complexity of Scott sentences of scattered linear orders.Rachael Alvir & Dino Rossegger - 2020 - Journal of Symbolic Logic 85 (3):1079-1101.
    We calculate the complexity of Scott sentences of scattered linear orders. Given a countable scattered linear order L of Hausdorff rank $\alpha $ we show that it has a ${d\text {-}\Sigma _{2\alpha +1}}$ Scott sentence. It follows from results of Ash [2] that for every countable $\alpha $ there is a linear order whose optimal Scott sentence has this complexity. Therefore, our bounds are tight. We furthermore show that every Hausdorff rank 1 linear order has an optimal ${\Pi ^{\mathrm {c}}_{3}}$ (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  2.  22
    Scott complexity of countable structures.Rachael Alvir, Noam Greenberg, Matthew Harrison-Trainor & Dan Turetsky - 2021 - Journal of Symbolic Logic 86 (4):1706-1720.
    We define the Scott complexity of a countable structure to be the least complexity of a Scott sentence for that structure. This is a finer notion of complexity than Scott rank: it distinguishes between whether the simplest Scott sentence is $\Sigma _{\alpha }$, $\Pi _{\alpha }$, or $\mathrm {d-}\Sigma _{\alpha }$. We give a complete classification of the possible Scott complexities, including an example of a structure whose simplest Scott sentence is $\Sigma _{\lambda + 1}$ for $\lambda $ a limit (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  3.  23
    Copying One of a Pair of Structures.Rachael Alvir, Hannah Burchfield & Julia F. Knight - 2022 - Journal of Symbolic Logic 87 (3):1201-1214.
    We ask when, for a pair of structures $\mathcal {A}_1,\mathcal {A}_2$, there is a uniform effective procedure that, given copies of the two structures, unlabeled, always produces a copy of $\mathcal {A}_1$. We give some conditions guaranteeing that there is such a procedure. The conditions might suggest that for the pair of orderings $\mathcal {A}_1$ of type $\omega _1^{CK}$ and $\mathcal {A}_2$ of Harrison type, there should not be any such procedure, but, in fact, there is one. We construct an (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  4.  11
    Interpreting a Field in its Heisenberg Group.Rachael Alvir, Wesley Calvert, Grant Goodman, Valentina Harizanov, Julia Knight, Russell Miller, Andrey Morozov, Alexandra Soskova & Rose Weisshaar - 2022 - Journal of Symbolic Logic 87 (3):1215-1230.
    We improve on and generalize a 1960 result of Maltsev. For a field F, we denote by $H(F)$ the Heisenberg group with entries in F. Maltsev showed that there is a copy of F defined in $H(F)$, using existential formulas with an arbitrary non-commuting pair of elements as parameters. We show that F is interpreted in $H(F)$ using computable $\Sigma _1$ formulas with no parameters. We give two proofs. The first is an existence proof, relying on a result of Harrison-Trainor, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark