Contextual emergence from physics to cognitive neuroscience

Journal of Consciousness Studies 14 (1-2):18-36 (2007)
  Copy   BIBTEX

Abstract

The concept of contextual emergence has been proposed as a non-reductive, yet well- defined relation between different levels of description of physical and other systems. It is illustrated for the transition from statistical mechanics to thermodynamical properties such as temperature. Stability conditions are shown to be crucial for a rigorous implementation of contingent contexts that are required to understand temperature as an emergent property. Are such stability conditions meaningful for contextual emergence beyond physics as well? An affirmative example from cognitive neuroscience addresses the relation between neurobiological and mental levels of description. For a particular class of partitions of the underlying neurobiological phase space, so-called generating partitions, the emergent mental states are stable under the dynamics. In this case, mental descriptions are (i) faithful representations of the neurodynamics and (ii) compatible with one another

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,628

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2009-01-28

Downloads
138 (#133,538)

6 months
2 (#1,185,463)

Historical graph of downloads
How can I increase my downloads?