From cell membrane to nucleotides: The phosphate regulon in Escherichia coli

Bioessays 12 (8):371-376 (1990)
  Copy   BIBTEX

Abstract

Most of the essential cellular components, like nucleic acids, lipids and sugars, are phosphorylated. The phosphate equilibrium in Escherichia coli is regulated by the phosphate (Pi) input from the surrounding medium. Some 90 proteins are synthesized at an increased rate during Pi starvation and the global control of the cellular metabolism requires cross‐talk with other regulatory mechanisms. Since the Pi concentration is normally low in E. coli's natural habitat, these cells have devised a mechanism for synthesis of about 15 proteins to accomplish two specific functions: transport of Pi and its intracellular regulation. The synthesis of these proteins is controlled by two genes (the phoB‐phoR operon), involving both negative and positive functions. PhoR protein is a histidine protein kinase, induced in Pi starvation and is a transmembrane protein. It phosphorylates the regulator protein PhoB which is also Pi starvation‐induced. The PhoB phosphorylated form binds specifically to a DNA sequence of 18 nucleotides (the pho Box), which is part of the promoters of the Pho genes. The genes controlled by phoB constitute the Pho regulon.The repression of phoA (the gene encoding alkaline phosphatase) by high Pi concentrations in the medium requires the presence of an intact Pst operon (pstS, pstC, pstA, pstB and phoU) and phoR. The products of pstA and pstC are membrane bound, whereas the product of pstS is periplasmic and PstB and PhoU proteins are cytoplasmic. The function of the PhoU protein may be regulated by cofactor nucleotides and may be involved in signaling the activation of the regulon via PhoR.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 92,682

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Escherichia coli as a Model System With Which to Study Cell Differentiation.Denis Thieffry - 1996 - History and Philosophy of the Life Sciences 18 (2):163 - 193.

Analytics

Added to PP
2013-11-23

Downloads
28 (#582,809)

6 months
7 (#478,520)

Historical graph of downloads
How can I increase my downloads?